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 Abstract 

In static space, the redshift of photons from the receding sources is related by the Doppler effect. In 

the expanding space, the sources in our rest frame emit without the Doppler redshift, but along the path 

wavelengths of photons will experience a redshift due to stretching. Photons from the comoving the 

expansion sources are emitted with Doppler redshifts in our rest frame, and along the path they acquire 

stretching redshift also, and thus their redshift turns out to be doubled. This is clear for nearby sources, 

where there is both stretching and the Doppler redshifts, and only the quadratic Doppler effect will be 

added for distant sources. A similar doubling occurred with the deflection angle of the rays w.r.t. the 

Newtonian one due to the curvature of space. This double redshift paradox in expanding space is 

unsolvable in Friedmann's models with a constant rate of proper times. It is shown that the models of 

slowing time cosmology (STC) solve this paradox. The observed redshifts contain the contribution of 

only one of the two effects, and this indicates the presence of a third effect with a violetshift, which 

compensates the contribution of one of the redshifts. In STC, proper times rate in the past were faster and 

photons were emitted with an initial violetshift, compensated along the path by the stretching redshift. 

The observed redshift is then associated only with the Doppler effect, in addition the visible luminosities 

become dimmer due to relativistic aberration. Observations already in the linear part of the distance 

dependence of redshifts reject the models with Friedmann’s metric, leading to double redshift, and agree 

only with the STC. The basic relations of STC are presented, including the “distance modulus-redshift” 

relation describing observational data without dark energy. A modified picture of evolution in early 

epochs and the CMB properties are discussed. In particular, in STC the light speed in the past was faster 

and this solves the cosmological problems of the previous models (homogeneity, horizon, flatness, etc.).  

Keywords:  cosmological models, expansion of the universe, cosmological redshift, Doppler effect, CMB, dark 

matter, dark energy   
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Introduction 

Cosmology studies the structure of space-time and the evolution of matter in the universe 

as a whole. The last hundred years, the only theory of gravity, the predictions of which were 

confirmed by experiments, remained general relativity (GR), thus the models of the universe 

were built on the basis of GR and the cosmological principle with some model approximations. 

The simplest of such models, proposed by Einstein [1] in 1917, was the model of a closed 

static universe as a 3-sphere, where both the radius 
0 .a const  and the time rate are constant. 

But the equations of GR did not have static solutions, and antigravity (cosmological constant 

 ) was introduced for stabilization. In 1922 A. Friedman [2] found non-static solutions in the 

comoving coordinates with a variable scale factor and the need for antigravity with   has 

disappeared. The line element, also with a constant rate of proper times, has been taken as: 

 
2 2 2 2 2 2 2 2 2 2 2

, (2) (2)( ) ( ), s  in ,kds c d a d S d d d d              (1) 

with , (sin ,1,sinh )kS     at (1,0, 1)k   . The solutions allowed both expansion and 

contraction, but when J. Lemaitre in 1927 [3] and E. Hubble in 1929 [4] found that redshifts 

increase with distance, it became clear that we deal with the expanding universe. 

In static models, receding sources emit photons with Doppler redshift. In expanding 

space, the same photons, which have an initial Doppler redshift in our rest frame, will arrive at 

with an additional redshift due to stretching of their wavelength along the path. This is obvious 

for nearby sources, where there is both the Doppler effect and stretching. Therefore, the photons 

from the comoving the expansion sources will be with a doubled redshift (for the distant ones, 

also with the quadratic Doppler effect). Thus, in the expanding space the double redshift 

paradox takes place [5]. A similar doubling was in GR in the deflection angle of the rays with 

respect to the Newtonian one due to the additional contribution of the curvature of space. 

However, in the standard formulation of relativistic cosmology, only one of two effects 

was indicated as the cause of the redshift. Some authors indicated the Doppler effect as the 

cause, while others - the stretching of the wavelength during expansion. Such duality in 

explaining the redshift was a problem, but instead of solving it, a myth was created that these 

two interpretations are equivalent ways of describing the same physical phenomenon, and on 

this mythical basis, when one of the effects was taken into account, the other was completely 

ignored. This was justified by the fact that if both contributions were taken into account, the 

predictions would double, in contradiction with observations, i.e. in fact, the theory was fitted 

to observations contrary to its internal logic. 

In the previous paper [5], it was shown that agreement between theory and observations 

is achieved not by ignoring one of the two independent physical phenomena, which is erroneous 

and, as the result, led the development of theory to a standstill, but by the search for a third 

mechanism admissible in GR that compensates the contribution of one of the two redshifts. It 

was shown that in the Friedmann models with metric (1), the double redshift paradox is 

unsolvable due to the constancy of the proper times rate during expansion, i.e. due to a 

hypothesis inherited from Einstein's static model. 

In [5] a more general model was considered, where not only the spatial components of 

the metric are variable, but also the temporal component too, which means that the time rate 

also changes with expansion. It was shown that the double redshift paradox is solved in models 

of slowing time cosmology (STC), where the line element (1) is written in terms of the time of 

present epoch t  [ ( )a a t , 
0 0( )a a t ]: 
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(2)2
( ( ) ).k

a
ds c dt a d S d

a
       (2) 

But in [5], the STC was studied as a consequence of the diffusion treatment of gravity. 

In this paper, however, the STC will be formulated within the framework of GR without 

reference to a specific physical model of gravity, and the fact of slowing of time rate will be 

deduced from the observational data. If until now the influence on the cosmological evolution 

of the change in the spatial component of the metric and the related increase in the distances 

between objects has been studied, then the STC also studies the influence of the change in the 

time component of the metric and shows that GR is consistent with observations only at a faster 

rate of time in the past and its slowdown during expansion. 

As the result of this fact, in addition to the two mechanisms of frequency shifting in 

cosmology, the Doppler effect and stretching, a third mechanism appears - the violetshift of 

photons emitted in earlier epochs, which is then compensated by the redshift due to the 

stretching of wavelengths along the path. As a result, the observed shift will be Doppler redshift 

only. Then, for the visible luminosity, one must also take into account the relativistic aberration. 

In the paper the main relations of the STC, including the “distance modulus – redshift” 

relation, are presented. It is shown that STC is consistent with observations without hypotheses 

about antigravity (dark energy) and a large fraction of dark matter. In STC there are no   

cosmological problems of previous models, such as the problems of horizon, homogeneity, 

flatness and cosmological constant. Problems with horizon and homogeneity are absent since 

in early epochs the light speed was higher and the radius of the horizon increased faster than at 

the current speed of light. More details of the STC will be presented in the book [6].] 

Some of the elements of the STC have been previously studied by many authors. There 

have been numerous attempts to explain redshifts only by the Doppler effect [7], but the 

treatment based on stretching has become standard, from which the well-known Mattig’s 

formula follows [8]. Hypothetical models were widely developed in which redshifts were 

explained only by a varying speed of light [9]. In contrast to these particular treatments, STC 

takes into account all these effects simultaneously - in it, the slowing down of the time rate 

leads to the slowing down and the speed of light, and both the Doppler effect and the stretching 

contribute to the redshifts, but the latter effect is compensated by the initial violetshift. 

In Section 1 three mechanisms of the cosmological frequency shift are discussed and it 

is shown that one must take into account the aberration in cosmology. In Section 2 the main 

relations of the STC are presented and its observable consequences, including a description of 

the redshifts, are considered. In Section 3 the description of the early Universe and the CMB in 

the STC, as well as the solution of cosmological problems, are discussed. 

1. Three mechanisms of the cosmological frequency shift and aberration 

1.1. Two redshift mechanisms: Doppler effect and stretching  

In static space, objects receding in our rest frame (regardless of the reason of such 

motion) emit photons with the Doppler redshift, and then these photons arrive at us without 

changing their wavelength. 

In the universe with expanding space, objects recede with speeds increasing with 

distance. Therefore, in our rest frame, photons from the comoving the expansion sources are 

also emitted with the Doppler redshift, but then at the propagation acquire an additional redshift 

due to the stretching of their wavelength during the expansion of space. These are two 

independent mechanisms of the cosmological redshift - the first effect takes place already at the 
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beginning, and the second arises along the path, and both of these mechanisms contribute to the 

observed redshift. Therefore, first we will consider them separately, and then together. 

In flat static space, photons from a source with the receding velocity 0( )v r H r , where 

0H  is a constant, will arrive at the observer at 0r   with the Doppler redshift Dz . At low 

velocities the observed wavelength 
D  is related with the initial wavelength 

0  as: 

 0

0

0

1 1 1 , .D D
D v H r c

z r z
c c H




   

 
(3) 

In the first approximation, therefore, there is a linear growth of 
Dz  with distance. Here, 

redshifts are already present at the beginning, and then photons propagate with this constant 

wavelength. For distant sources, when the speeds are not small, the Doppler effect must be 

taken into account in the relativistic form: 

 0

0

0

1 / 1 /
1 .

1 / 1 /
D

D v c H r c
z

v c H r c





 
   

   
(4) 

The distance up to the source is then expressed in terms of Dz  as: 

 

2

2

0

/ 2
.

1 / 2

D D

D D

c z z
r

H z z


 

 
 (5) 

Let the space is expanding, the distance up to the object is ( )r a t   and the source of 

photons is resting w.r.t. us at .r const , i.e. non-comoving the expansion. Velocity of such 

static source in our rest frame is equal to zero 0r a a    , and therefore its peculiar 

velocity pecv a  is equal and opposite to the receding velocity of objects comoving the 

expansion: pecv v  , where v a Hr  , /H a a , /a da dt . The periods of photons 

from such source at the beginning ( ) , at the end of the path (
E ) and their ratio, inverse to 

the ratio of frequencies   and 
E , are given by the expressions: 

 0

0, , .E E
E

E

a
c a c a

a

 
   

  
        (6) 

During the propagation of the photon, the initial wavelength /c   increases with the scale 

factor 0 /a a  and becomes equal to 
E  , i.e. the photon will arrive at with stretched redshift 

Ez  due to the expansion of space: 

 

0

0

1 .E
E

a
z

a




  

 
(7) 

In the first approximation: 

 

0 0
0 0 0(1 ) 1 , ,E

H r H v
a a H t a z r

c c c

 
       

   
(8) 
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i.e. the linear growth occurs with a distance of both speed and Ez , which is similar to the linear 

Doppler effect case considered above. 

Thus, the source in our rest frame (with a peculiar velocity 0H r  w.r.t. the comoving 

expansion bodies around it) emits photons without Doppler redshift, but during propagation, 

there appears the stretching redshift. 

Above, we considered two mechanisms for the appearance of redshift in GR, when each 

of them revealed in its pure form, and the second was absent: 

a. If space is static and the source is receding, the photons have the Doppler redshift 

at emission and arrive at with this redshift. 

b. If, on the contrary, space is expanding, and the source is resting w.r.t. us (with the 

peculiar velocity 0pecv a H r   ), then photons will not have a Doppler shift, 

but their wavelengths are stretched during propagation.  

At low velocities, in both cases, the redshift is the same 
0Ec z v H r , which was the reason 

for the confusion in its treatment. 

Let us consider the third case, which is a combination of the two previous ones, and 

where, therefore, both redshift mechanisms will be present. This is the case when 

c. space is expanding, but there is also a receding source, comoving the expansion, 

with velocities 0pecv a   and 0v a H r  . 

If the comoving source is behind the static source, then, for the observer at the static source, the 

photons from the comoving source, receding from it with the speed 
0H r , will have the Doppler 

redshift 
Dz  from (4), i.e. with wavelength 

D . Thus, the Doppler redshift of photons from the 

comoving source can be registered near the static source, at the beginning of their path. 

Further, the photon from the static source with the wavelength 0  and the photon from 

the comoving source with the wavelength D , propagating practically along the same path, 

will experience the same wavelength extension, proportional a . At arriving to us, the 

wavelength of the first photon 0  will become equal to E  from (7), while the second photon 

with the initial wavelength D  in the static frame arrives at with the wavelength DE , which 

also follows from the analog of the formula (7): 

  

0

1 .DE
E

D

a
z

a




    (9) 

Taking into account that, according (4), it was 0(1 )D Dz    at the beginning, we find the 

observed redshift z  as a combined redshift, expressed through Dz  and Ez  as: 

 

0 0

(1 )(1 ) 1 .DE DE D
E D

D

z z z
  

  
       (10) 

In the first approximation, this gives: 

 02 / 2 / ,E Dz z z r H c v c   (11) 
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i.e. the contributions of the pure Doppler effect 0 /Dz r H c  and the pure stretching 

0 /Ez r H c  are summed and lead to a doubled redshift than with one of the effects. 

Fig. 1 shows that, in fact, a single effect is observed with 
0 /z H r c  and 

0 70 / secH km Mpc   (red line). This shows that in the former formulation of relativistic 

cosmology there was a catastrophic discrepancy between theory and observations (black line). 

This is the double redshift paradox. 

1.2. Third mechanism: violetshift at emission and observed Doppler shift 

In GR, therefore, two types of cosmological redshift, due to the Doppler effect and due 

to stretching, had to be taken into account jointly. But when both mechanisms contribute to the 

total shift, the predicted redshifts for nearby objects become doubled and, since observations 

show a single shift, the double redshift paradox arises. 

It follows from this fact that one of the initial assumptions of the standard formulation 

of relativistic cosmology is incorrect. As noted in [5], this is the initial choice of the time 

component of the metric as unchanged during the cosmological expansion. This means the 

hypothesis about the constancy of the proper time rate during the expansion. For agreement 

with observations, it turned out to be sufficient to abandon this limitation, natural for the static 

models only, and return to the general case of a non-static metric for the time component too. 

     
   Fig. 1. Graph "distance modulus - redshift" for SN 1a in the linear part (in the logarithmic scale of 

z ), 
05lg( / ) 25A c H  , 

0 70 / secH km Mpc  , the data from [10a]. Black line – the double 

redshift with shift 5lg(2) 1.5   . 
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In the general case, during expansion, both the spatial components of the metric and the 

temporal component can be variable. Moreover, if the latter is chosen such that the rate of 

proper times in earlier epochs is faster than the current one, then the frequencies of the emitted 

photons will then be higher than the current ones, i.e. they will be violet-shifted already when 

emitted. As a result, a third mechanism is added to the two previous ones, the Doppler effect 

and stretching, - the violetshift at emission in earlier epochs. If it is compensated by the redshift 

due to stretching along the path, then the observed displacement will appear as a single redshift, 

which is what the observations show. Thus, we come to the consideration of cosmological 

frequency shifts in the framework of the STC. 

Returning to the above-mentioned hypothesis of the previous standard formulation, we 

see that it consisted in the fact that when a photon was emitted in early epochs at a large 

distance, its wavelength was considered the same as here now, at the moment of reception, 

although there is no reason for this and there is nothing has been proven. In reality, however, 

in GR, together with the cosmological principle, the wavelength of a photon, when it is emitted 

at an earlier epoch 1( )   , should coincide with the wavelength of the same photon at the 

registration point 0 0   only at the same early epoch, i.e. in their proper time 1(0)  . For 

example, the wavelength of a photon emitted far from us in the epoch of 10 billion years after 

the Big Bang in local time there should coincide with the wavelength of a photon here also in 

the epoch of 10 billion years after the Big Bang. 

After the comparison of the wavelength of the photon at the place of its emission and at 

the place of observation is carried out correctly, i.e. in terms of the wavelength of the photons 

near the observer in the same early epoch, another problem arises - how is the wavelength of 

the photon here in that epoch associated with the wavelength of the same photon in our epoch. 

Since the proper times in STC are variable, it is necessary to choose the time of one of 

the epochs as a standard one and the times of other epochs to express in its terms as a time 

coordinate. For us, the natural choice is our time, since signals from all previous epochs are 

compared with signals in our time. Then it is convenient to express the proper times   in terms 

of our local proper time t : 

 
2 2

00[ ( )] .d g a t dt   (12) 

In GR, there remains arbitrariness in the choice of the metric’s time component 00g , 

since it can be either less than unity 00[ ( )] 1g a t   or more than it 00[ ( )] 1g a t  . 

For this reason, turning to the observational facts, we see that the double redshift paradox 

can be solved only if, at the cosmological expansion, the rate of proper time everywhere slows 

down. The character of this dependence is naturally the same as for energies, i.e. the slowdown 

is proportional to the scale factor. For the proper times, therefore, we have: 

 0 .
a

d dt
a

   (13) 

For the metric in (12) this means that 
2 2

00 0( ) /g t a a , i.e. for earlier epochs with 0a a  we 

have 00( ) 1g t  , but for future epochs with 0a a  it will be 00( ) 1g t  . 

Since in earlier epochs the rate of proper time was faster, then at each point the photon 

frequencies were larger, and the wavelengths were shorter than those of the same photons now. 

This leads to a violetshift in earlier epochs by a factor opposite to the stretching factor in (9). 
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Therefore, if the wavelength of the photon at emission was equal 
D  only when the Doppler 

effect was taken into account, then in fact the wavelength was shorter due to the initial 

violetshift. Denoting this wavelength as 
CD , we can find it from the relation: 

 

0

1
.

1

CD

D E

a

a z




 


 (14) 

Then, the initial violetshift due to the going faster of time in (14) and the further redshift 

due to stretching from (9) should mutually cancel each other and, as a result, the observed 

redshift should be reduced to the Doppler effect from (4). The observed wavelength CDE , 

including the contribution of these three effects, is then calculated as the result of a chain of 

relations:  

 0

0 0 0 0 0 0

1 1 .CDE CDE DE CDE DE D D D
D

DE DE D

a a
z z

a a

       

       
         (15) 

Thus, we really get the exact relations: 

 

0 0

1 1 , , .CDE D
D CDE D Dz z z z

 
 

 
        (16) 

In the first approximation, this gives a linear Doppler effect, which from the very beginning 

was considered as explanation of the observed linear dependence of z  on r  and v : 

 0 / / .Dz z r H c v c   (17) 

So, the paradox of double cosmological redshift, caused by the combined action of the 

Doppler effect and stretching during expansion, is naturally solved in the STC. Note that the 

previous formulation contradicted the observations already in the linear section, where the 

conclusions are model-independent, i.e. do not depend on the curvature of space and only one 

parameter of the universe 
0H  plays a role. 

1.3. Relativistic aberration  

In relativistic kinematics, the Doppler effect and the aberration are associated with the 

same factors, and their difference is only that the first effect expresses changes in the frequency 

and wavelength of the photon, and the second - in the intensity and direction of the photon flux. 

Therefore, if the Doppler effect takes place in the STC, then there will be the aberration too.  

The solid angle element (cos ')d d   in the rest frame of the source differs from the 

same angle in the rest frame of the observer (cos )d d   due to the Lorentz transformation 

for cos ' : 

 

2

2

1
(cos ) (cos ').

(1 cos ')

v
d d

v
 







 (18) 

For the flow from a receding source in the rest frame of the observer, cos 'v v   and the 

observed element of the solid angle   is found from:  

 
21

(cos ) (cos ') (1 ) (cos '),
1

D

v
d d z d

v
  


  


 (19) 

where (1 )Dz  is the redshift factor due to the longitudinal Doppler effect. 
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 As we see, the change in the solid angle depends on the same factor (1 )Dz , 

determining the Doppler effect and these two effects will contribute together - the first reduces 

the frequency of photons, and the second - the number of photons in a given solid angle. With 

an increase in the solid angle of the cone, the number of photons in the initial cone decreases, 

which means the dimming of the apparent luminosity. This decrease in the density of the light 

flux coming from receding objects must necessarily be taken into account in cosmology 

describing the expanding universe.   

The neglect of aberration in the previous models of relativistic cosmology was associated 

with the above-considered misconception that the cosmological redshift was allegedly caused 

only by the stretching along the path. In this point of view, the Doppler effect was considered 

only as a visual analogy to illustrate a purely geometric effect. If there is essentially no Doppler 

effect, then there should be no aberration either.  

This was explained in geometric language by the fact that in the expanding space the 

solid angles in the light fluxes do not change. However, in our rest frame, the Doppler effect 

takes place already at the emission of a flux of photons, and therefore in our rest frame there 

will initially be an aberration, i.e. distortion of the solid angle of the flow. Further, this flow 

spreads in expanding space without changing the solid angle. 

The apparent luminosity is inversely proportional to the solid angle of the initial flow 

and is defined as 
2/ 4 pl L d , where pd  is the photometric distance, L - the absolute 

luminosity. Therefore, at taking into account of the aberration, the apparent luminosities of 

distant objects l  will be less than l . This leads to the effective increasing of the photometric 

distance pd  with respect to pd  in which aberration is not taken into account: 

 
2 2

, (1 ) .
(1 ) 4

p D p

D p

l L
l d z d

z d
   


 (20) 

After inserting the definition of pd , we obtain:   

 
2

,(1 ) ,p D kd z r    (21) 

where ,kr   is the areal radius of the sphere onto which the radiation spreads.   

2. Slowing time cosmology 

2.1. Basics of the model  

The double redshift paradox, considered above in standard cosmological models, and its 

solution in STC show that other news in the description of cosmological phenomena can be 

expected. In [5], the minimum necessary revisions in the models of relativistic cosmology in 

expanding 3-space were considered, but here this discussion will be continued with the 

improvement of some of the observational consequences. 

In Friedmann's models the line element (1) was written in terms of proper time  . In 

STC, this line element in terms of our time t  with 
0 /d dt a a    takes the form: 

 

2
2 2 2 2 2 2 20

, (2)2
( ).k

a
ds c dt a d S d

a
       (22) 

The time component of the metric and the determinant are, therefore, equal to  
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2
2 20

00 0 ,2
( ) , sin .

( )
k

a
g t g a a S

a t
    (23) 

The energy-momentum tensor of homogeneous dust with a local energy density   is: 

 

2 2
00 0 00 0

0 00 00 002 2

0

, , ,
i k

ik dx dx a a
T T T T g T g

ds ds a a
           (24) 

The energy-momentum conservation condition gives the relations ( /a da dt ): 

 
0 0000

0

1 1 1 1
( ) 0, ( ) 0,

2 2

k klkl
ik i

g g
T g T T g T

x x t tg g

   
     

    
 (25) 

 
2 3 3 3

0 02

1
( ) 0, ( ) 0, .

a
a a a a

a t a t
    

 
   

 
 (26) 

The Einstein's equations 

 
4

8
,ik ik

G
G T

c


  (27) 

with the Einstein tensor / 2ik ik ikG R Rg  , where ikR  is the Ricci tensor, 
ik

ikR g R , give: 

 

2 2
2 2 0

04 2 4 2

3 8
, 0, 1.

a G a
a ka k

a c c a




 
    

 
 (28) 

After simplifying by using (26): 

 

2 2 3 3

0 0

2 2 4 4

0

8 1 8
, ,

3 3

m
m

a a G a a G a
k a

a c c a a c

   
     (29) 

we get the evolution equation:  

 

2
2 2 0 0

2
, .m ma a a a

a c k a c k
a a a a

 
     

 
 (30) 

The comparison with the Friedman equation: 

 

2

2 , ,m mda a da a
c k c k

d a d a 

   
       

   
 (31) 

shows that the expansion speed in (30) contains an additional factor 0 /a a  which means a 

faster expansion speed in earlier epochs in terms t . The light speed c  was also faster:  

 
2 2 2 2 00, .

a
c dt a d c c

a
    (32) 

For our epoch with 
0a  and the constant 0H  the Eq. (30) gives the usual expressions: 

 
0 0 0

0 0

0 00

1 / 1 1
, , .

/

m

mm

ka a kb a c kb a
a c c H b

a a aa a b b

  
         (33) 

For proper time  , we obtain from (31): 
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( ) 1/2

0

a t

m

a da
c

a ka
 


  (34) 

with solutions: 

 

3/2

1/2

( ) arcsin , 1

2
, 0

3

( ) arcsh , 1

m m

m

m

m m

m

a
a a a a k

a

a
c k

a

a
a a a a k

a




  




 


    


. (35) 

For the time t  corresponding ( )a t , the evolution equation (30) gives:  

 

( ) 3/2

0 0

1
a t

m

a da
ct

a a ka



  (36) 

with solutions: 

  

0

3/2

1/2

0 0

0

3 2
arcsin 1 ( ) , 1

4 3

2 3 3
, 0

3 5 5

3 2
arcsh 1 ( ) , 1

4 3

m
m m

m m

m

m
m m

m m

a a a
a a a a k
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a a a
ct k

a a a

a a a
a a a a k

a a a



   
      
   




  

   
       
   

 (37) 

2.2. The “distance modulus - redshift” relation  

The world line of photons from distant sources is described by the relations:  

 

2 2
2 2 2 20

2

0

0, .
a a

c dt a d cdt d
a a

      (38) 

Together with (30), this allows one to find the magnitude of the angle   passed by the photon: 

 

0 0

0

2
.

( )

t a

t a m

a da
c dt

a a a ka
   


   (39) 

Integration gives: 

 0 0
0 ,

0 0

/ 1
2(1 ) 1 (2 1) 1 1 .

1
k

c a a a a
a S kb kb

H a a kb


  
         

   

 (40) 

The ratio 
0 /a a  gives the magnitude of the stretching of the wavelengths: 

 0 1 E

a
z

a
   (41) 
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and in the previous treatments explaining the cosmological redshift z  by extension 
Ez z , 

it follows from (40) 

  1

0 0 0

0 0

1
sin ( 1) 1 2 1 .

(1 )
E E

E

c
a z q q z

H z q
      

 
 (42) 

where 02 1/ (1 )q kb  . This was the basis for Mattig's formula [8], which was obtained 

taking into account only stretching and therefore did not take into account both the Doppler 

effect and the aberration.  

But in STC the observed redshift z  is caused by the Doppler effect as in (4) Dz z , 

and below we calculate its contribution. At first, consider the relativistic effects in static space, 

when a set of sources recede by speeds proportional to the distance 
0v H r . It is necessary to 

clarify which of the definitions of the distance is used here. 

The fact is that even in this simple case, there are different types of distances, each of 

which has its own specific physical meaning. The first of them is the curvature radius r  of the 

sphere onto which the radiation of the source spreads. The second is the physical distance r , a 

number of standard scales on the hypersurface of simultaneity .t const  from the observer up 

to the source: 

 0 0
0

2 2 2
00 0

r
r arcsin , sin .

1 /

r
dr c H r H

H r c
H c cH r c

   
     

   
  (43) 

In the expanding space, where the physical distance is equal to r( , ) ( )t a t  , the 

situation is more complicated. The local recession speed v( , )t   of objects depends on both 

distance and time and, instead of 0H , there appears 1H( ) /a da d  . There is only a local 

law for the difference of speeds v  of nearby objects, the physical distance between which at 

the moment t  is equal to r . From the definition of this distance 

 r( , ) r( , ) r( , ) ( )t t t a t          (44) 

we find the expansion speed of this spatial section in the form:  

 v( , ) r( , ) H ,t t a    



  


 (45) 

which gives the desired local recession law: 

 v( , ) H r( , ).t t      (46) 

In relativistic cosmology, the receding speeds of nearby objects on the hypersurface 

.t const  are related by the relativistic relation:  

 
2

v( ) H r
v( ) ,

1 v( ) H r / c

 
 

 


 

 
 (47) 

which, due to smallness of v / c , can be written as 

 
2 2v( ) v( ) [1 v ( ) / ]H .c a         (48) 

From this we obtain the equation for determining the velocities: 
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2 2 2 2

v
H r H ,

1 v / 1 v /

d dr
d

c c
 

 
 (49) 

which gives the dependence of the local velocities on the physical distance: 

 

v( , )

2 2
0

(v / ) v H
( ) arcsin , v sin .

H H1 v /

t
c d c c r

r t c
c cc


   

    
   

  (50) 

The photons from the comoving the expansion sources arrive at us with the same Doppler 

redshift (1 )Dz  that was already at the beginning of their path. Therefore, the Eq. (4) contains 

v , what allows us to find the dependence of r  from 
Dz : 

 

2

0

2

0

/ 2
arcsin .

H 1 / 2

D D

D D

H z zc
r

H z z

 
  

  
 (51) 

Since H  is proportional to  0H  and depends on the factor 0 / (1 )Ea a z  , then: 

 0 0

0 0

1
,

H (1 ) (1 ) 1 2E E E

H a a f

a a z z q z
   

  
 (52) 

where  

 0 /
( , ) 1 .

1 1

E
E

a a b z
f z b

b b


  

 
 (53) 

At small distances , 1D Ez z , and the formula (50) passes into the linear law: 

 0v .DH r cz  (54) 

The apparent and absolute luminosities of sources ,l L  are related to the photometric 

distance pd  as 
2/ 4 pl L d . They are expressed through apparent and absolute magnitudes, 

m , M , as 
/2.5 25

10 2.52 10 /ml cerg cm se    , 
/2.5 3 25

10 3.02 10 /ML cerg cm se
  . 

Expansion leads to a decrease in the energy and frequency of arrival of photons by a total value 

2(1 )Dz , and relativistic aberration reduces the apparent luminosity by the same factor 

2(1 )Dz . As a result, for apparent luminosity we obtain the expression: 

 
2 2 4

1
.

4 4 (1 )
F

p D

L L
l

d r z 
  


 (55) 

The photometric distance pd  is thus equal to: 

 
2 5 ( )/5

,0 (1 ) 10 ,m M

p Dd z r Мpc      (56) 

from which for the distance modulus 5lg( ) 25pm M d     , using (51), follows the 

«distance modulus - redshift” relation (
0

5 lg( / ) 25A c H   ): 

 

2 2

2

0

(1 ) / 2
5lg arcsin .

1 / 2(1 ) 1 2

D D D

D DE E

z z z
A

z zz q z


   
         

 (57) 
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The value of 1 Ez  is proportional to the distance, and hence the recession speed of the 

object, while 1 Dz  at large distances contains a quadratic dependence on speed also and 

therefore 
D Ez z . Expression of Ez  through Dz  will sufficiently complicate the form of Eq. 

(57), while in order to estimate how STC can be in agreement with the observational data, we 

need to simplify this formula as much as possible. For this, the multiplier in front of arcsin we 

approximate by means of a small parameter  :  

 

2
1

0

(1 )
(1 ) .

(1 ) 1 2

D
D

E E

z
z

z q z




 
 (58) 

Substituting this into (57), we obtain a simplified version of the relation “distance modulus - 

redshift” in STC: 

 

2
1

2

/ 2
5lg (1 ) arcsin

1 / 2

D D
D

D D

z z
z A

z z

 
  

    
   

 (59) 

In Fig. 1 a comparison of (59) with the observational data on Type Ia supernovae (in the 

ordinary and logarithmic scales along z  axis) is presented, where 
0 0.70H h  is taken from 

the linear part and 0.2  . This value of   means 
0.8

0(1 ) 1 2 (1 )E E Dz q z z    , which 

is quite realistic. At small distances, this means 00.8 / (1 )E Dz z q   . As we see, the STC 

relation (59), where there is only one free parameter  , is in good agreement with the 

observational data. 
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Fig. 1. The relation "distance modulus - redshift" for Type Ia supernovae in the usual (top 

graph) and logarithmic scales (bottom graph). Blue dots are 333 selected (with low 

distortion) data from a number of compilations [10a], and red dots are 33 "pure" 

supernovae outside or on the edge of galaxies [10b]. Green line - theoretical curve z   

in STC according to (59) with 0.2  . 

3. The early universe and cosmological problems 

3.1. The early universe  

Let’s consider shortly the modifications in the cosmology of early epochs. The energy-

momentum tensor of ultrarelativistic matter and radiation with the local energy density   and 

pressure / 3p  , having the form: 

 
2 2

00 0 00 0
0 00 00 002 2

0

4 1
( ) ,

3 3

, ,

i k i k
ik ik ikdx dx dx dx

T p pg g
ds ds ds ds

a a
T T T g T g

a a

  

   

    

    

 (60) 

we insert into the energy-momentum conservation condition: 

 
0

00 0

1 1
( ) 0,

2

klklg
T g T

x xg

 
  

 
 (61) 

and obtain the relations ( /a da dt ): 

 
2 4 4 4

0 02

1
( ) 2 0, ( ) 0, .

a
a a a a

a t a t
    

 
   

 
 (62) 

The evolution equation (28) then transforms into: 
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,

3

ma aa a G a
k
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 
    (63) 

and:  

 

2
2 2 0 0 0 0

2 2 2
, .m ma a a a a a

a c k a c k
a a a a

 
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 
 (64) 

From a comparison with the Friedman equation: 

 

2

2 0 0

2 2
, ,m ma a a ada da

c k c k
d a d a 

  
       

   
 (65) 

we see that the expansion speed contains an additional factor 0 /a a  again, which leads to a 

faster expansion speed in the early epochs in terms of the time of our epoch. 

For proper time   we get: 
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 
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0 00
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
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
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

  (66)  

For the time t  corresponding ( )a t , the evolution equation (64) gives:  
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  
    

   



  
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
 

      
 

   (67) 

3.2. Modifications in the properties of CMB  

The observed CMB, emitted in a very early universe, allows one to study closer epochs, 

in particular, the recombination epoch, when the radiation disconnected from matter. Notice 

some revisions in the description of the CMB, which follow from the main distinctions of the 

STC from the former treatments. 

The faster rate of proper times in early universe explains a number of facts for which 

radical hypotheses had to be advanced earlier. In particular, if the scale factor was 103 times 

smaller, then the speed of light was just as faster in terms of our time 
310c c , which explains 

the homogeneity and isotropy of CMB by the much faster mixing of the photon flux, which 

practically removes the horizon problem. 
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Moreover, since in the very early universe the particles of matter were ultrarelativistic, 

then they then moved several orders of magnitude faster than photons in our era, which also 

explains the large-scale homogeneity and isotropy of all matter. 

The ratio of the temperature of the CMB in an earlier epoch eT  to its observed 

temperature rT  is determined by the ratio of the observed wavelength r  to the wavelength in 

that epoch 
e . In the Friedmann model, the redshift was attributed to stretching and therefore 

the ratio of wavelengths was given by the ratio of scale factors 0 /a a , and therefore depended 

on Ez , and also provided an equation for ( )T a : 

 0 1 , .e r
E

r e

T a dT da
z

T a T a




       (68) 

In STC all the redshifts of the radiation are determined by the Doppler effect and 

therefore the temperature ratio now depends on ( )v a  and Dz :  

 
1 /

1 .
1 /

e r
D

r e

T v c
z

T v c






   


 (69) 

As a result, the relation between redshifts Dz  and a  now turns out to be more complicated, 

since we must specified the dependence ( )v a .  

But the fact that there appears Dz  instead of Ez  already reveals some of the differences. 

Unlike linear stretching of wavelengths, the relativistic Doppler effect has a quadratic part (see 

(5)), dominating at large Dz , which means that the CMB is almost completely described by 

this part of the effect. At the same a , we have D Ez z , and therefore, re-treatment of the 

measured redshift as a Doppler shift E Dz z  without changing its value means that it now 

refers to larger a  than previously thought, i.e. to a later time t . 

Larger values of a  and later times t  mean significantly lower densities of matter and 

radiation in that epoch when the CMB detached from matter. At 1500Dz  and v c v

, v c , the Eq. (69) takes the form: 

 7

2

2 2
, 9 10e r

D

r e D

T c v
z

T v c z

 

 

   (70) 

and heterogeneities in the recombination epoch, through which the relict stream passed, would 

look flattened for us due to relativistic contraction. 

Despite a later time and a larger scale factor than in the former models, processes in the 

recombination epoch went faster, and temperatures were higher by a factor 0 / 1 Ea a z  .  

And, finally, another important revision concerns measurements of the characteristics of 

the CMB in our epoch, from which the value of 

 3

0 0.096mh  (71) 

is determined [11]. From this value, assuming 0.315m , then a value 0.67h  was fixed, 

which was significantly different from 0.73h  determined from redshifts and apparent 

luminosities of Type 1a supernovae. In STC, on the contrary, the supernova redshifts fix the 

value 0.70h  (or 0.73h ), and then m  can be determined from the CMB data by using 
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the empirical relation (71), which gives 0.28m  (or 0.25m ). These lower values of 

m  are confirmed by other independent observations of the distribution of galaxies giving 

0.26m . Thus, in STC there is no contradiction between the supernova data and the CMB 

observations, on the contrary, they only complement each other.  

3.3. The lack of the former cosmological problems in the model 

a. The lack of flatness problem  

In the Friedmann model, in early epochs, space becomes flat with high accuracy. Indeed, 

the evolution equation (65) can be rewritten as: 
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, ,

8 8
c c

a A c H c
k A

a a G G
  

 
     (72) 

which through the curvature parameter / c    takes the form: 
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2
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     (73) 

Then, at the dominance of matter or radiation, we have: 
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 (74) 
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 
 (75) 

and in both cases   at 0a   tends to a flat value 1 , i.e. to 0k  . 

In STC, there is no flatness problem, since the curvature parameter   decreases in early 

epochs. The evolution equation (64), rewritten in the form: 
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can be represented in the form similar to (73): 
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Then we obtain: 
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 (78) 
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This shows that in both cases at 0a   the parameter   tends to zero as 
2a : 
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2 1 2

0 0 0 0

1
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a a
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   

  
 (80) 

Thus, in terms of the time of our epoch, there is no flatness problem and there is no 

need for fine tuning. 
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b. Homogeneity and isotropy as a result of faster evolution 

The large-scale homogeneity and isotropy of the distribution of matter in the model are 

consequences of a causal relationship between different regions under conditions of faster light 

speed and faster evolution.  

During the radiation-dominated and recombination epochs, particles of matter diffuse 

as a small admixture in a high-temperature gas of photons, and such diffusion with large values 

of the light speed in those epochs smooth out any significant inhomogeneity in the distribution 

of matter and radiation in causally connected regions. 

c. The lack of horizon problem 

The horizon problem of the Friedmann model was that, on the one hand, at the expansion 

the size of a causally related region (horizon) grows as horr t , while the scale factor grows 

more slowly – as 
1/2a t  in early epochs and as 

2/3a t  later. On the other hand, it was 

believed that the CMB flux ceased to interact with matter after the recombination epoch and 

the radiation density in causally unrelated regions could not be aligned in any way, but in fact, 

on average isotropic and homogeneous fluxes come to us from them. 

In STC, the curvature radius of the universe and the size of the causally connected 

regions grew much faster in early epochs than was assumed in the Friedmann model, the light 

speed was also faster in terms of our time. Thus, in the STC there is no horizon problem. 

d. The lack of a cosmological constant problem 

The former standard cosmological paradigm was mainly based on the cosmological 

constant   or the dark energy. However, its value turned out to be so small that it could not 

be explained not only by the Standard Model of particle physics, but also by its hypothetical 

generalizations. This is the cosmological constant problem, which turned out to be practically 

insolvable in the former standard paradigms in both cosmology and particle physics. 

In reality, particle physics provides neither theoretical nor observational grounds for 

introducing a zero-point vacuum energy [12]. This means that cosmology can be in agreement 

with particle physics only in the absence of the cosmological constant 0  . 

In STC the cosmological constant is absent, and Einstein's equations with matter 

energy-momentum density are sufficient to describe the observations. This means reaching 

agreement between cosmology and particle physics in the problem of vacuum energy. 

e. The lack of the cosmological dark matter problem 

Cosmological models set limits on the density of non-baryonic dark matter. In the STC 

there is no such need, although in principle a slight admixture of such matter is not excluded. 

In any case, both the practical absence and the presence of some small admixture of dark 

matter is not a problem, and therefore there is no problem of dark matter in STC. 

Conclusion 

The standard model of relativistic cosmology, even with the inclusion of hypothetical 

dark matter and dark energy, leads to a doubling of redshifts due to the need to take into account 

in GR both the Doppler effect (due to the motion of the source in the observer's rest frame) and 

the stretching of the photon wavelengths during propagation (due to the expansion of space). 

Since only a single redshift is observed, the double redshift paradox takes place. This paradox 

means a catastrophic discrepancy between theory and observations and the failure of the 

previous models of relativistic cosmology. 
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The fact is that in models with the Friedmann metric, to which the standard model of 

cosmology belongs, the hypothesis of the static model about the constant rate of proper times 

during the expansion of space has been preserved. However, in relativistic theories, the 

geometry of space-time is variable and usually the variability of the geometry of space also 

leads to variability of the time rate, while the constancy of the time component of the metric is 

admissible only in short times. 

 The STC formulated in [5] with slowing down local proper times naturally solves the 

double redshift paradox. In STC in earlier epochs, photons were emitted with a violetshift, 

which was compensated by the redshift due to stretching during their propagation. As a result, 

the wavelengths at registration contain only the contribution of the relativistic Doppler effect 

 But if there is the Doppler effect, there is an aberration also, which leads to additional 

dimming of sources due to decreasing in the number of photons per unit solid angle. Therefore, 

STC differs from the Friedmann model also by taking into account the aberration. 

The new “distance modulus – redshift” relation, following from STC, is consistent with 

the data on type 1a supernovae. The STC leads to a number of non-trivial consequences for the 

early universe and allows in a natural way to solve the cosmological problems of the previous 

models. The more complex dependence of the redshifts on the velocity and scale factor makes 

it possible to match the value of 
0H  from the data on CMB and supernova. 

A more details of STC and its consequences will be presented in the book [6]. 
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